Физика курс лекций. Математика, электротехника примеры решения задач

Высшая математика
Решение задач
ТФКП
Вычислить предел функции
Найти производную функции
Дифференциальные уравнения
Вычислить интеграл
Понятие производной
Кратные и криволинейные интегралы
Два основных метода интегрирования
Вычисление двойного интеграла
Изменить порядок интегрирования
Примеры решения научно-технических задач
Математический анализ Предел функции
Производная и дифференциал интегрирование
Элементы линейной алгебры
Векторная алгебра
Аналитическая геометрия
Уравнение прямой в пространстве
Математический анализ
Односторонние пределы
Производная сложной функции
Раскрытие неопределенностей
Ряды Фурье в комплексной форме
Интеграл Фурье
Замена переменных в двойных интегралах
Двойной интеграл
Вычислить тройной интеграл
Алгебра формулы
Информатика
Защита информации в компьютерной сети
Периферийные устройства в Linux
Конфигурирование системы Linux
Введение в систему команд Linux
Программное обеспечение ПК
Задание исходной функции
Аппроксимации рядом Тейлора
Моделирование физических явлений
Аппроксимация полиномами Чебышева
Эффективная оценка рациональных функций
Преобразование в код Фортрана или С
Движение частицы в магнитном поле
Разделение изотопов
Моделирование рассеивания альфа-частиц
Работа с документами в системе Maple
Браузеры Linux электронная почта и факс
Linux рабочая станция
Linux работа в сети Windows и Novel
Linux безопасность и связь сетей с Internet
Работа с трёхмерной графикой
Типы накопителей
Авторизация Категорирование
прав доступа
Некоторые сведения об архитектуре Windows
Графика OpenGL
Среда разработки Visual Studio
Трехмерная графика
Профилактика ПК
Электротехника
Курс лекций по электротехнике
Теория электрических сигналов
Maple для моделирования и расчета
электронных схем
Малосигнальный анализ усилителя
на полевом транзисторе
Расчет аналогового фильтра
Проектирование цифрового фильтра
Моделирование цепи на туннельном диоде
Применение интеграла Дюамеля
линейная алгебра
матричные операции
Пакет статистических расчетов
Регрессионный анализ
Пакет для студентов
Функции интегрирования
работа с таблицами
Физика
Лабораторные по физике
Сопромат
Курсовая работа по сопромату
Расчет балок
Расчет распорных систем
Работа от действия поперечной силы
Основная система метода сил
Построение эпюр
Вынужденные колебания
Определение инерционных сил
Неразрезные балки
Расчет многопролетной балки
Энергетика
Атомные реакторы
Канальный кипящий графитовый реактор
Воздействие радиации на человека
Малая теплоэнергетика
История искусства
Архитектурное проектирование
Готическое искусство
Архитектура и живопись
Современный интерьер
русские усадебы
Естественность природы в интерьере
Монументальное и декоративное искусство
Масштаб произведения

Физика курс лекций

Задачи по электротехнике Курсовой расчет

  • Соединение фаз генератора и нагрузки треугольником Вторым основополагающим способом соединения является соединение типа «треугольник-треугольник»
  • Цепи однофазного синусоидального тока и напряжения Рассмотренные выше источники энергии могут быть как постоянными, так и переменными, причем закон их изменения во времени может носить как периодический, так и непериодический характер. Наибольшее практическое распространение получили источники, а следовательно, и цепи, электромагнитные процессы в которых подчиняются периодическому закону.
  • Резонанс токов Резонансный режим, возникающий при параллельном соединении R, L, C, называется резонансом токов. В отличие от рассмотренного ранее режима резонанса напряжений, данный режим не столь однозначен.
  • Метод эквивалентного генератора (активного двухполюсника) Все методы, рассмотренные ранее, предполагали расчет токов одновременно во всех ветвях цепи. Однако в ряде случаев бывает необходимым контролировать ток в одной отдельно взятой ветви. В этом случае применяют для расчета метод эквивалентного генератора.
  • Расчет разветвлённых цепей при наличии взаимной индуктивности Расчёт разветвлённых цепей при наличии взаимной индуктивности представляется более сложным этапом. Он осуществляется с помощью законов Кирхгофа либо методов контурных токов. Отметим, что метод узловых потенциалов в данном случае не применим, поскольку токи в ветвях определяются не только разностью потенциалов соседних узлов, но и токами других ветвей, с которыми они связаны индуктивно. Пусть имеются три индуктивно связанные катушки, намотанные на общий сердечник, выполненный из немагнитного материала, и подключённые к двум источникам ЭДС
  • Высшие гармоники в трехфазных цепях Рассмотрим процесс поведения высших гармоник в трехфазных системах. При этом будем полагать, что фазные напряжения источника не содержат постоянных составляющих и четных гармоник, т.е. кривые напряжения симметричны относительно оси абсцисс, которые на практике встречаются наиболее часто.
  • Расчет цепей несинусоидального переменного тока При негармонических воздействиях алгоритм расчета цепи может быть следующим: периодическое негармоническое воздействие представляют в виде суммы гармонических сигналов, используя ряд Фурье; ограничивают бесконечный ряд Фурье некоторым числом гармоник, учитывая при этом, что мощность каждой последующей гармоники убывает пропорционально квадрату ее амплитуды;
  • Задача Асинхронный двигатель с короткозамкнутым ротором подключен к сети с напряжением Uл = 380 В и имеет следующие номинальные данные: полезная мощность Р2ном = 4,5 кВт, частота вращения ротора n2ном = 1440 об/мин, КПД ηном=85,5%, коэффициент мощности cosφном=0,85.
  • Пример Генератор постоянного тока с параллельным возбуждением, имеющий сопротивление обмотки якоря Rя = 0,1 Ом и сопротивление обмотки возбуждения Rв = 60 Ом, нагружен внешним сопротивлением R= 4 Ом. Напряжение на зажимах машины U = 220 В.
  • Анализ цепей синусоидального тока Цель данного задания – ознакомить студентов с применением символического метода расчета сложных электрических цепей, основанного на комплексном представлении воздействий цепи и вызываемых ими реакций. Данный метод относится к методам анализа линейных электрических цепей в частотной области и служит для определения реакции цепи в установившихся режимах при гармоническом воздействии.
  • Линейные электрические цепи Физические законы в электротехнике Электромагнитное поле представляет собой особый вид материи. Как вид материи оно обладает массой, энергией, количеством движения, может превращаться в вещество и наоборот.
  • Векторные диаграммы переменных токов и напряжений Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :   а) длина вектора в масштабе равна амплитуде функции Im ; б) начальное положение вектора при t = 0 определяется начальной фазой a; в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции. viagra online pharmacy
  • Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии.
  • Переходные процессы в электрических цепях Определение переходных процессов Установившимся режимом называется такое состояние электрической цепи (схемы), при котором наблюдается равновесие между действием на цепь источников энергии и реакцией элементов цепи на это действие.
  • Электрические цепи с распределенными параметрами Параметры электрических цепей в той или иной мере всегда распределены вдоль длины отдельных участков. В большинстве практических случаев распределением параметров вдоль длины пренебрегают и представляют электрическую цепь эквивалентной схемой с сосредоточенными схемными элементами R , L и C.
  • Расчет отраженных волн в линии с распределенными параметрами при подключении ее к источнику ЭДС
  • Расчет магнитной цепи с постоянным магнитом Постоянные магниты находят применение в автоматике, измерительной технике и других отраслях для получения постоянных магнитных полей.
  • Расчет мгновенных значений параметров режима методом численного интегрирования системы дифференциальных уравнений. Режим нелинейной цепи любой сложности может быть описан системой нелинейных дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа.
  • Электрическое поле трехфазной линии электропередачи
  • Уравнения Максвелла в комплексной форме Если векторы поля  и  изменяются во времени по синусоидальному закону, то синусоидальные функции времени могут быть представлены комплексными числами и, соответственно, сами векторы будут комплексными
  • Теоремы и методы расчета сложных резистивных цепей Узлом электрической цепи (схемы) называется точка, в которой сходятся не менее трех ветвей. Ветвью электрической цепи (схемы) называется участок, состоящий из последовательно включенных элементов, расположенных между двумя смежными узлами.
  • Метод узловых потенциалов Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей
  • Векторные диаграммы переменных токов и напряжений
  • Резонанс токов Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов.
  • Топологические методы расчета электрических цепей Топологические определения схемы
  • Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока.
  • Расчет электрических  цепей несинусоидального тока Расчет электрических цепей, содержащих источники энергии [источники ЭДС e(t) и источники тока j(t)] с несинусоидальной формой кривой, выполняется по методу положения. Процедуру расчета можно условно разделить на три этапа.
  • Переходные процессы в электрических цепях Установившимся режимом называется такое состояние электрической цепи (схемы), при котором наблюдается равновесие между действием на цепь источников энергии и реакцией элементов цепи на это действие. Различают следующие 4 вида установившихся режимов в цепи: 1) режим отсутствия тока и напряжения; 2) режим постоянного тока; 3) режим переменного синусоидального тока; 4) режим периодического несинусоидального тока.
  • Операторный метод расчета переходных процессов Если система дифференциальных уравнений, которыми описывается переходной процесс в схеме, решается операционным методом, то и сам метод расчета переходного процесса также называется операционным или операторным.
  • Анализ переходных процессов в цепи R, L, C Переходные процессы в цепи R, L, C описываются дифференциальным уравнением 2-го порядка. Установившиеся составляющие токов и напряжений определяются видом источника энергии и определяются известными методами расчета установившихся режимов.
  • Четырехполюсники и фильтры Уравнения четырехполюсника Четырехполюсником называется часть электрической цепи или схемы, содержащая два входных вывода (полюса) для подключения источника энергии и два выходных вывода для подключения нагрузки.
  • Электрические цепи с распределенными параметрами Параметры электрических цепей в той или иной мере всегда распределены вдоль длины отдельных участков.
  • Синтез электрических цепей Характеристика задач синтеза Синтезом электрической цепи называют определение структуры цепи и параметров составляющих ее элементов R, L и С по известным свойствам (характеристикам), которым должна удовлетворять цепь. Задачи синтеза цепей противоположны по цели и содержанию задачам анализа.
  • Нелинейные магнитные цепи постоянного потока Электромагнитное поле, которое лежит в основе всех многообразных явлений и процессов, исследуемых в электротехнике, имеет две равнозначные стороны – электрическую и магнитную. Как известно, в электрической цепи под воздействием источников энергии возникают электрические токи, которые протекают по электрическим проводам.
  • Нелинейные цепи переменного тока. Общая характеристика нелинейных цепей переменного тока и методов их исследования
  • Переходные процессы в нелинейных цепях описываются системой нелинейных дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа.
  • Теория электромагнитного поля Электростатическое поле Электротехника ― это отрасль знаний об электромагнитных явлениях и их практическом применении в технике. Физической основой всех электромагнитных явлений является электромагнитное поле.
  • Электрическое поле трехфазной линии электропередачи
  • Магнитное поле сложной системы проводов с током В большинстве реальных случаев электрические токи, создающие магнитное поле, протекают по тонким каналам – электрическим проводам. Для создания сильных магнитных полей, используемых в технике, применяются системы проводов, образующие катушки индуктивности.

Математика интегралы при вычислении обьема и площади

Курсовая работа по сопромату. Примеры решения задач

Основы начертательной геометрии. Проекционное черчение

  • Изложены теоретические основы начертательной геометрии и проекционного черчения, общие правила графического оформления чертежей по ГОСТ ЕСКД.
  • Комплексный чертеж в ортогональных проекциях. Точка Построение третьей проекции по двум заданным
  • Взаимное положение прямых Прямые могут быть параллельными, пересекаться или скрещиваться.
  • Плоскость общего положения наклонена к плоскостям проекций Проекции точки плоскости общего положения строят с помощью вспомогательной прямой
  • Конусность - это отношение разности диаметров оснований конуса к расстоянию между ними.
  • Простой разрез При выполнении разрезов следует учитывать существующие правила, условности и упрощения.
  • Нанесение геометрических размеров Здесь рассмотрены общие правила нанесения размеров на чертеже в соответствии с ГОСТ 2.307-68.
  • Дополнительные проекции Раздел посвящен построению дополнительных видов методом перемены плоскостей проекций на примерах определения натурального значения отрезка и плоских фигур, а также построения окружности, расположенной в проецирующей плоскости
  • Аксонометрические изображения Подробно анализируется построение изометрии предмета по ортогональным проекциям Приведены задания для самостоятельной работы с материалом Образование аксонометрических проекций
  • Свойства разверток. Метод вращения Развертки выполняются в качестве заготовок при изготовлении изделий из листового материала.

Черчение

  • Приступая к изучению сборочных единиц, студенту следует сразу определиться в терминологии и не путать уже известное понятие - «деталь» и новое – «сборочная единица». Деталь это изделие, изготовленное из единого куска материала. Сборочная единица (узел) – изделие, состоящее из нескольких деталей. Они подлежат соединению между собой на предприятии-изготовителе сборочными операциями (свинчивание, сочленение и т.д.).
  • Спецификация. Форма и порядок заполнения спецификации к сборочным чертежам регламентированы ГОСТом. Спецификация в табличной форме содержит перечень всех составных частей изделия и конструкторские документы, к нему относящиеся.
  • Алюминиевые сплавы. Это сплавы алюминия с медью, кремнием, магнием, цинком и др. элементами
  • Техника вычерчивания и обводка Вычерчивание всех элементов задания на листе, включая построения, следует выполнять тонкими, но четкими линиями, используя граненый карандаш Т или 2Т. Карандаш нужно заточить на длину 25-30 мм, пишущий стержень должен выступать на 8-10 мм
  • Обозначения графические материалов и правила их нанесения на чертежах (ГОСТ 2.306 - 68) В сечениях изображаемых деталей используются стандартные условные графические обозначения материалов. В данном задании предусмотрено вычерчивание в сечении профиля проката (швеллер, рельс, зент, уголок и т.д.), который изготовлен из металла.
  • Построение лекальных кривых Лекальные кривые имеют большое применение в технике. Рассмотрим наиболее часто встречающиеся способы построения плоских кривых. Эти кривые обычно обводят с помощью лекал, поэтому они получили название лекальных кривых.
  • Циклоида – траектория (путь) точки К, лежащей на окружности, которая катится без скольжения по прямой MN
  • Уклон и конусность Уклоном называется, величина, характеризующая наклон одной прямой линии к другой прямой. Уклон выражается простой дробью или в процентах.
  • Правила нанесения размеров изучаются по мере прохождения отдельных разделов курса. Для выполнения первых индивидуальных заданий достаточно изучить приведенные ниже правила.
  • Сопряжение – это плавный переход от одной линии к другой. То есть: касание прямой и дуги окружности, касание двух дуг окружностей. Это и плавный переход от одной линии к другой при помощи третьей, промежуточной линии. Точки касания линий называются точками сопряжения, а центры дуг – центрами сопряжения. Выполнить сопряжение при заданных радиусах – значит предварительно построить необходимые центры и точки сопряжения.
  • Контур детали с элементами сопряжения Учебный чертеж детали с элементами сопряжения должен выглядеть подобно тому, как это показано на рис. 52. Необходимо четко обозначить ход построения центров и точек сопряжения, а сами точки должны быть выделены небольшими кружочками.
  • Геометрические построения
  • Построение сопряжения двух дуг
  • Выполнение чертежей деталей, имеющих сопряжения
  • Последовательность нанесения размеров
  • Проецирующие плоскости
  • Позиционные задачи на пересечение прямых и плоскостей При моделировании важно знать взаимное положение геометрических фигур, которые могут пересекаться (что, часто, не должно быть), касаться и т.д. Ортогональный чертеж не всегда дает ответ на эти вопросы. Однако знания свойств параллельного проецирования, позволяет сразу решить некоторые позиционные задачи
  • Пересечение двух плоскостей общего положения. Метод секущих плоскостей
  • Методы преобразования проекций. Вращение Позиционные и метрические задачи решаются проще, если геометрические фигуры занимают по отношению к плоскостям проекций частные положения (перпендикулярные или параллельные). Такое положения фигур можно достичь вращением их вокруг проецирующих, линий уровня или координатных осей
  • Способ замены плоскостей проекции Суть метода состоит в задании новых изображений геометрических фигур удовлетворяющих определенным свойствам. Это может быть какой-либо дополнительный вид фигуры, натуральная величина какой-либо ее грани (например, для построения разверток) или других задач, типа определения угла между гранями, расстояние между двумя объектами и т.д.
  • Решение метрических задач способом замены плоскостей проекций