Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Дифференциалы высших порядков Дифференцирование сложной ФНП Найти частные производные функции Интегрирование функций нескольких переменных Записать уравнение касательной плоскости к поверхности

Контрольная по математике Дифференциальные уравнения, интеграл, пределы Типовые задачи

Дифференциалы высших порядков ФНП

Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка. Полный дифференциал функции

в общем случае является функцией переменных  и
приращений , , , . Если предположить, что 1) функция  имеет непрерывные частные производные
второго порядка и 2) для любого  значения  остаются произвольными, но постоянными, то можно рассматривать полный дифференциал от , т.е.  – дифференциал второго порядка исходной функции  в точке  соответственно , , , .

Пусть ,

Тогда . Поэтому

;  – произвольные.

ПРИМЕР 1. Для функции . Найти ,  при произвольных  и .

Решение. Вычисляем последовательно частные производные  и , а затем , ; . Записываем

,

здесь можно также обозначить , .

Заметим, что если  записать в операторной форме

,

то для дифференциала второго порядка  можно использовать запись

или

,

свернув оператор формально "в квадрат суммы ".

Можно убедиться, что при соответствующих предположениях полный дифференциал третьего порядка  в операторной форме запишется 

или 

.

Например, для  (см. ранее
ПРИМЕР 1) имеем ; ; ; , т.е.

;

здесь ,   – произвольно заданные постоянные.

По аналогии можно записать

  –

полный дифференциал ""-го порядка для функции .

Для функции ,  имеем соответственно

;

;

аналогично

.

Дифференцируемость ФНП

Теорема о существовании всех частных производных ФНП

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Криволинейные интегралы Понятие криволинейных интегралов первого и второго рода. Вычисление криволинейных интегралов. Физический смысл криволинейного интеграла первого рода. Вычисление массы кривой. Механический смысл криволинейного инте-грала второго рода. Вычисление работы силы. Формула Гри-на.
Некоторые механические приложения интеграла ФНП