Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Дифференциалы высших порядков Дифференцирование сложной ФНП Найти частные производные функции Интегрирование функций нескольких переменных Записать уравнение касательной плоскости к поверхности

Контрольная по математике Дифференциальные уравнения, интеграл, пределы Типовые задачи

Интегрирование функций нескольких переменных

ФНП   рассматривается на некотором множестве , , . Пусть  – ограниченное, связное и замкнутое множество точек из ; впредь для краткости такое множество  будем называть фигурой . Интеграл ФНП по фигуре  строится в зависимости от количества независимых переменных ФНП и структуры (вида) фигуры . Так, например, в школьном курсе математики содержится первоначальное понятие определенного интеграла  функции , , . Здесь функция имеет одну независимую переменную, фигура  – отрезок.

Для функции двух переменных , очевидно, интеграл можно строить на дуге  или на плоской области , , . Функция трех переменных может рассматриваться на дуге ,
на части криволинейной (может быть и прямолинейной) поверхности , на "теле" , здесь , ,  – подмножества  и т.д.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура.

С размерностью фигуры связано интуитивно понимаемое понятие мера фигуры (сокр. ). Теория меры множества включает понятия: "спрямляемость" дуги", "квадрируемость" области,
"кубируемость" тела, устанавливая, в частности, необходимые и
достаточные условия их существования.

Сведем в таблицу предлагаемые термины для лучшего запоминания.

,

Фигура ,

Размерность фигуры ,

Мера
фигуры ,

Отрезок

, одноразмерная

Длина

Дуга

, одно-
размерная

Длина

Плоская

область

двухразмерная

Площадь

Часть

поверхности

двухразмерная

Площадь

 Тело

трехразмерная

Объем

Теорема необходимое условие существования определенного интеграла

Пусть , ,  – множество точек из , т.е. . Построить схематично график функции  на множестве : Для функции  представить на плоскости  множество точек  ее существования; указать свойства этого множества.

Понятие предела функции многих переменных (сокр. ФНП) вводится в предельной точке области определения функции.

Иногда удобно использовать переход от переменных  и  к полярным координатам. В частности, условие  (одновременно и независимо друг от друга) преобразуется в условие  при всяком  (независимо от ; сразу для всех ).

. Неопределённый интеграл. Первообразная. Неопределённый интеграл и его свойства. Таблица интегралов. Основные методы интегрирования: замена переменной; интегрирование по частям; интегрирование рациональных дробей, тригонометрических и иррациональных выражений
Некоторые механические приложения интеграла ФНП