Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Соединение фаз генератора и нагрузки треугольником Резонанс токов Метод эквивалентного генератора Расчет разветвлённых цепей Анализ цепей синусоидального тока Векторные диаграммы Расчет сложных трехфазных цепей

Задачи по электротехнике Курсовой расчет

Соединение фаз генератора и нагрузки треугольником

 Вторым основополагающим способом соединения является соединение типа «треугольник-треугольник» (рис.4.6).

Для соединения треугольником существует следующее соотношение:

  . 92(4.4)

Установим взаимосвязь между фазными и линейными токами:

Рис.4.6. Соединение «треугольник-треугольник»

Построим векторную диаграмму токов и напряжений приемника (рис.4.7).

Рис.4.7. Векторная диаграмма трехфазной цепи при соединении приемников треугольником при симметричной нагрузке

Рассмотрев любой треугольник токов, можно, аналогично напряжениям при соединении звездой, сделать вывод (только для симметричной нагрузки)

  . 93(4.5)

Помимо вышеназванных существуют и комбинированные способы соединения: «звезда-треугольник», «треугольник-звезда».

Режимы работы трехфазных цепей

Соединение «звезда-звезда» с нулевым проводом и без нулевого провода

Поскольку трехфазные цепи являются совокупностью однофазных цепей, то для их расчета используются все рассмотренные методы, в том числе и комплексный метод расчета. А значит расчет трехфазных цепей можно иллюстрировать построением векторных диаграмм токов нагрузки и топографических диаграмм напряжений.

Наиболее рациональным методом расчета цепи может считаться метод двух узлов. Для выбранных положительных направлений напряжений и токов на схеме (рис.4.8) составим соответствующую систему уравнений для расчета токов

  94(4.6)

 ; 95(4.7)

.  96(4.8)

Рис.4.8. Соединение фаз генератора и приемника
по схеме «четырехпроводная звезда»

1. Симметричная нагрузка

Нагрузка считается симметричной, если комплексные сопротивления ее фаз равны Za = Zb = Zc.

а) четырехпроводная звезда

Для простоты в качестве сопротивлений фаз нагрузки будем рассматривать активные сопротивления (Za = Zb = Zc = Zф = Rф). Наличие нулевого провода делает одинаковыми потенциалы узлов N и n (YN = ¥), значит UnN = 0. При этом фазные токи равны, а фазные напряжения на нагрузке будут полностью повторять фазные напряжения генератора. Для фазы А:

.

Аналогично для фаз В и С:

;

Исходя из сказанного, построим топографическую диаграмму фазных напряжений и векторную диаграмму токов (рис.4.9).

б) трехпроводная звезда

ZN = ¥; YN = 0;

.

Поэтому, как и в четырехпроводной схеме, фазы приемника работают независимо друг от друга и нулевой провод не нужен. Диаграмма в данном случае будет абсолютно той же самой.

Рис.4.9. Векторная диаграмма для симметричной нагрузки
в трех- и четырехпроводной схеме

2. Несимметричная нагрузка

Пусть Ra ¹ Rb = Rc;

а) четырехпроводная звезда

;

;

;

.

На векторно-топографической диаграмме токов и напряжений (рис.4.10) показано сложение токов.

Рис.4.10. Векторно-топографическая диаграмма для несимметричной нагрузки

б) трехпроводная звезда

Из-за неравенства проводимостей ветвей , то есть между точками n и N появляется некоторая разность потенциалов, так называемое смещение нейтрали. При этом фазные напряжения на нагрузках уже не будут повторять систему фазных напряжений генератора. Поэтому задача сводится к задаче определения положения точки n на комплексной плоскости относительно N. Для его определения можно воспользоваться формулой узлового напряжения и теоретически ее рассчитать. Однако можно это сделать, основываясь на экспериментальных данных, суть которых состоит в следующем: производят измерения реальных значений напряжений на фазах нагрузки; в выбранном масштабе для напряжений проводят дуги окружностей радиусами, равными измеренным фазным напряжениям из точек A, B, C. Точка пересечения этих трех дуг и даст искомое местоположение точки n внутри треугольника, ограниченного линейными напряжениями (рис.4.11).

Соединив точки n и N отрезком, получим смещение нейтрали. По найденным фазным напряжениям приемника направляем векторы токов. Должно выполняться равенство

По результатам выполненных построений можно сделать главный вывод: если заведомо известно, что нагрузка несимметрична или может таковою стать, необходимо использовать четырехпроводную схему.

Рис.4.11. Определение смещения нулевой точки

 3. Обрыв фазы

Ra = ¥; Rb = Rc;

a) четырехпроводная звезда

;

Векторная диаграмма (рис.4.12) демонстрирует работу четырехпроводной системы.

б) трехпроводная звезда

.

Напряжение смещения  можно также определить методом засечек, как показано на рис.4.13.

;

;

.

Рис.4.12. Векторная диаграмма для обрыва фазы
в четырехпроводной системе

Токи в фазах b и с должны находиться в противофазе.

Рис.4.13. Векторная диаграмма для обрыва фазы
в трехпроводной системе

Трехфазные цепи В предыдущей главе рассматривалась работа электрических цепей, питающихся от однофазных синусоидальных источников тока или напряжения. Наряду с однофазными источниками существуют источники энергии, количество фаз у которых составляет два, три, четыре и т.д., и которые характеризуются тем, что ЭДС этих фаз имеют одинаковую частоту, но сдвинуты друг относительно друга на некоторую одинаковую фазу. Такие генераторы называются многофазными, а электрические цепи с такими источниками – многофазными.

Четырехпроводная звезда В четырехпроводной системе при коротком замыкании фазы приемника получаем короткое замыкание фазы источника.

Мощность трехфазных цепей Рассмотрим расчет мощности при соединении приемников по схеме четырехпроводной звезды и допустим, что нагрузка несимметрична.

Фильтры симметричных составляющих Симметричные составляющие несимметричных систем можно определить не только аналитически или графически, но и при помощи электрических схем, называемых фильтрами симметричных составляющих. Эти фильтры применяются в схемах, защищающих электрические установки. Степень асимметрии системы токов и напряжений не должна превосходить известные пределы, т.е. составляющие нулевой и обратной последовательностей системы напряжений и токов при нормальных режимах должны быть меньше некоторых наперед заданных величин, определяемых для каждой конкретной установки индивидуально.

Реактивные сопротивления и проводимости электрических цепей могут быть как положительными, так и отрицательными величинами и, следо-вательно, могут взаимно компенсироваться. Поэтому возможны случаи, когда, несмотря на наличие в цепи индуктивных катушек и конденсаторов, входное реактивное сопротивление или входная реактивная проводимость всей цепи оказываются равными нулю
Задачи по электротехнике Курсовой расчет