Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Элементы линейной алгебры Векторная алгебра Аналитическая геометрия Математический анализ Производная сложной функции Интеграл Фурье Замена переменных в двойных интегралах Двойной интеграл Вычислить тройной интеграл

Математика Примеры решения задач

Лекция 22

Производная сложной функции

Теорема 22..1.

Если функция  имеет производную в точке , а функция  имеет производную в точке , то сложная функция  имеет производную в точке  и имеет место формула:

 или  или . (22.1)

Замечание 1. Если , то , где ,

,  - дифференцируемые функции своих аргументов.

Пример 22.1.

Вычислить производную сложной функции .

,

  

, , тогда

.

22.2. Дифференциал сложной функции

По определению,  (*).

Если , , т.е.,  то

.

Таким образом, равенство (*) справедливо для сложной функции, т.е. когда - зависимая переменная.

Это свойство называется

инвариантностью формы первого дифференциала.

22.3. Производная обратной функции

Теорема 22.2.

Пусть функция  непрерывна и строго монотонна в некоторой окрестности точки  и пусть в этой точке существует и не равна нулю производная функции ( ). Тогда обратная функция  имеет производную в точке , причем: . (22.2)

Доказательство.

Из существования и непрерывности функции  следует, что обратная функция   существует и непрерывна в окрестности точки . Следовательно

 .

Тогда , то есть выполняется равенство (22.2).

Геометрический смысл производной обратной функции

Рассмотрим в окрестности точки  график функции . Известно, .

Тогда если , или ,

то  - угол наклона касательной к оси .

Поскольку , то

.

Пример 22.2.

Вычислить производную функции .

 .

В формуле  взят знак «+»

т.к. при  .

Пример 22.3.

Вычислить производную функции .

.

.

В частности, при имеем .

Дифференциальное исчисление функции одной переменной Производная функции

Физический смысл дифференциала. Если производная позволяет оценить скорость изменения некоторой величины, то  равен расстоянию, которое прошла бы точка за , если бы двигалась равномерно со скоростью, равной мгновенной скорости момент . Использование дифференциала для приближенных вычислений

Производная функции, заданной неявно Если дифференцируемая функция задана уравнением , то производная этой неявной функции может быть найдена из уравнения , где рассматривается как сложная функция от переменной x.

Основные теоремы дифференциального исчисления Теорема Ферма

Исследование функций с помощью производных Условия возрастания и убывания функции. Точки экстремума. Необхо-димые условия экстремума. Достаточные признаки существования экстремума. Отыскание наибольшего и наименьшего значений непрерывной на отрезке функции.
Ряды Фурье в комплексной форме