Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Элементы линейной алгебры Векторная алгебра Аналитическая геометрия Математический анализ Производная сложной функции Интеграл Фурье Замена переменных в двойных интегралах Двойной интеграл Вычислить тройной интеграл

Математика Примеры решения задач

Замена переменных в двойных интегралах связана с переходом от прямоугольной к криволинейной системам координат.

Имеем плоскость с прямоугольной  системой координат хОу и систему непрерывных функций

u = u(x,y)

v = v(x,y) ( 6 )

Для каждой точке плоскости (xi,yi) получаем два числа (ui,vi) , которые можно понимать как координаты другой точки. Выделим в xOy область D , ограниченную замкнутым контуром D. Тогда, уравнения ( 1 ) относят точкам области D множество точек (ui,vi). Пусть такое множество образует на плоскости область D*, ограниченную замкнутым контуром  D*. Каждой точке из D отвечает своя точка из D* и ни одна из них не пропущена. В этом случае систему ( 1 ) можно однозначно разрешить относительно х и у

x = x(u,v)

 y = y(u,v) ( 7 )

и переменные u, v теперь играют роль новых координат. Прямые линии x = const, y = const наз. координатными в системе хОу , тогда искривленные линии u = const , v = const будут координатными в криволинейной системе uOv.

Таким образом, между областями D и D* устанавливается взаимно – однозначное соответствие. Уравнения  ( 1 ) осуществляют преобразование области D в область D*, а уравнения ( 2 ) дают обратное преобразование. Области D и D* могут иметь разную форму и разные площади.

Двойной интеграл.

 В интегральной сумме двойного интеграла имеем элементы площади dxdy. В системе uOv ему будут соответствовать элементы площади  |J| dudv , где коэффициент искажения плоскости J (якобин) определяется формулой

| J | =  ( 8 )

После перехода к новой системе координат имеем

f(x,y) dx dy = f(x(u,v),y(u,v)) |J| du dv ( 9 )

В полярной системе координат переменные r , j имеют наглядный геометрический смысл – длина радиус-вектора и полярный угол. Координатную сетку образуют выходящие из точки лучи и концентрические окружности.

   ( 10 )

Обратное преобразование : r =

j = arc tg (y/x) .

Вычислим якобиан перехода к полярной системе координат

J =  = r ( 11 )

Применять переход к полярным координатам удобно в случаях, когда D является кругом с центром в начале координат или его сектором – круговым или криволинейным, а также, если в функцию f(x,y) переменные входят в виде x2 + y2 .

D – круг радиуса R  f(x,y) dxdy =  ( 12 )

D – круговой сектор f(x,y) dx dy = 

 

D – криволинейный сектор, замкнутый одной линией с полярным уравнением

r = r(j ) , 

f(x,y) dx dy =  ( 13 )

D – криволинейный сектор, замкнутый двумя линиями с полярными уравнениями

r = r1(j ) , r = r2(j ) ,

f(x,y) dx dy =  ( 14 )

Пр. 1  Вычислить площадь круга. S = dxdy =  = j  r2/2  = pR2

Преобразование Фурье Интегральную формулу Фурье можно записать в виде . Это есть комплексная форма интеграла Фурье.

Колоколообразный импульс

Интегрирование функций нескольких переменных. Двойной интеграл и его свойства. Метод интегральной  суммы. Всякая физическая система имеет пространственные размеры и описывается набором величин, которые могут меняться при переходе от точки к точке системы. Например, тело имеет переменную плотность. Задача – вычислить общую массу тела. Решение такого типа задач и дает метод интегральной суммы.

Основные свойства двойного интеграла. Постоянный множитель выносится за знак интеграла а f(x,y) dx dy = аf(x,y) dx dy т.к. общий множитель членов интегральной суммы можно вынести за скобку.

Определенный интеграл Задачи, приводящие к понятию определенных интегралов. Определен-ный интеграл как предел интегральных сумм. Основные свойства определенного интеграла. Производная интеграла по верхнему пределу. Формула Ньютона - Лейбница. Вычисление определенного интеграла: интегрирование по частям и подстановкой.
Математика Примеры решения задач