Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Тройные интегралы примеры решений

Математика интегралы при вычислении обьема

Цилиндрическим телом называется тело, ограниченное плоскостью Oxy, поверхностью, с которой любая прямая, параллельная оси Oz, пере-секается не более чем в одной точке, и цилиндрической поверхностью, образующая которой параллельна оси Oz.

Определенный интеграл. Формула Ньютона-Лейбница.

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю:

где Свойства определенного интеграла Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b].
  1. где k - константа;
  2. Если для всех , то .
  3. Если в интервале [a, b], то

Формула Ньютона-Лейбница Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на [a, b], то

Вспомним теперь теорему Стокса: , где - непрерывно дифференцируемые функции, - кусочно гладкая поверхность, - ее край, причем направление обхода относительно выбраной стороны является положительным.

Получим определение без использования системы координат. Пусть - точка, - плоскость, в которой лежит окружность радиуса с центром в . Тогда по теореме о среднем ввиду непрерывности подынтегральной функции. Здесь точка близка к . По теореме Стокса, или .

Ввиду произвольности выбора плоскости, получаем проекцию на произвольную ось . Это определяет и сам вектор.

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю

Площадь криволинейной трапеции

Площадь фигуры, ограниченной осью 0x, двумя вертикальными прямыми x = a, x = b и графиком функции f (x) (рисунок 1), определяется по формуле

Замена переменной в определенном интеграле

Вычислить интеграл .

Вычислить интеграл .

Найти площадь фигуры, ограниченную графиками функций и .

Вычислить площадь эллипса .

Основные правила интегрирования
Двойным интегралом от функции по области D называется предел, к которому стремится n-я интегральная сумма (*) при стремлении к нулю наибольшего диаметра частичных областей.