Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Двойные интегралы примеры решений

Математика вычислить интеграл примеры решений

Переход от двойного интеграла к повторному. Изменение порядка интегрирования. Переход к полярным координатам. Смысл этих задач - научиться быстро определять параметры (в декартовых координатах) и (в полярных координатах), необходимые для перехода от двойного интеграла к повторному

Геометрические приложения криволинейных интегралов

Пример Найти площадь области, ограниченной гиперболой , осью Ox и вертикальными прямыми x = 1, x = 2 (рисунок 7).

Решение. Вычислим площадь с помощью криволинейного интеграла. Найдем отдельно каждый из интегралов. Следовательно, плошадь заданной области равна

Пример Найти площадь области, ограниченной эллипсом, заданным параметрически в виде (рисунок 8).

Решение. 1) Применим сначала формулу . Получаем Площадь данной фигуры можно вычислить, используя также и две другие формулы:
Рис.8 Рис.9

  Пример. Вычислить интеграл , если область D ограничена линиями y = x, x = 0, y = 1, y = 2.

Определенный интеграл
Интегральное исчисление функций многих переменных. Понятие двойного интеграла Римана. Условия существования двойного интеграла. Вычисление двойного интеграла путем сведения его к повторному. Основные свойства двойного интеграла. Отображения плоских областей. Переход к полярным координатам.