Термоядерный синтез Реакторная технология Атомные реакторы

Термоядерный синтез

Из четырех основных источников ядерной энергии в настоящее время удалось довести до промышленной реализации только два: энергия радиоактивного распада утилизируется в источниках тока, а цепная реакция деления - в атомных реакторах. Третий (наиболее мощный) источник ядерной энергии - аннигиляция элементарных частиц пока не вышел из области фантастики Термоядерные реакции - реакции слияния (синтеза) легких атомных ядер в более тяжелые, происходящие при очень высоких температурах (порядка десятков миллионов градусов и выше). Запасы дейтерия, который можно использовать в D - T реакции, практически неограниченны. В гидросфере Земли запасено 4*1013 т дейтерия, который может явиться основным термоядерным горючим.

Ядерные реакции в звездах Прежде чем рассматривать ядерные реакции в космосе, коротко остановимся на проблеме звездной эволюции. Окружающий нас мир состоит из различных химических элементов. Как образовались эти элементы в естественных условиях? В настоящее время общепризнанной является точка зрения, что элементы, из которых состоит Солнечная система, образовались в ходе звездной эволюции. Сжатие звездного вещества за счет гравитационных сил приводит к повышению температуры в центре звезды, что создает условия для начала ядерной реакции горения водорода Следующий этап термоядерной реакции - горение гелия В момент взрыва сверхновой температура резко повышается и во внешних слоях звезды происходят ядерные реакции так называемый взрывной нуклеосинтез. Эволюция Вселенной начинается с Большого Взрыва. В первые мгновения реализуется так называемая дозвездная стадия образования элементов, стадия образования легчайших элементов. Какая из этих двух реакций играет более существенную роль, зависит от температуры звезды. В звездах, имеющих массу, сравнимую с массой Солнца, и меньше, доминирует протон - протонная цепочка. Основное время эволюции звезды связано с горением водорода. Но на этой стадии звездной эволюции массивных звезд существенную роль начинают играть многочисленные реакции с участием нейтронов, протонов, а-частиц и 7- квантов Характерные особенности реакций горения углерода и кислорода следующие Продукты s-процесса должны эффективно выноситься во внешнюю оболочку звезды и попадать в межзвездную среду без дальнейших ядерных реакций. Один из аргументов в подтверждение r-процесса в звездах - наличие сдвоенных максимумов, коррелирующих с магическими числами нейтронов N = 50, 82 и 126 В углеродно-азотном цикле ядро углерода C служит как бы катализатором.

Реализация принципа естественной безопасности в проекте БН-1200

Зависимость эффективного коэффициента размножения от обогащения ядерного топлива

Позитрон. Аннигиляция.Взаимные превращения элементарных частиц Открытие позитрона, частицы по своим характеристикам похожей на электрон, но имеющей в отличие от электрона положительный единичный заряд, было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона.

Источником ионизирующего излучения может быть космический объект, земной объект, содержащий радиоактивный материал, или техническое устройство, испускающее или способное испускать ионизирующее излучение.

Физические основы ядерного синтеза Термодинамика ядерного синтеза То, что ядерные реакции синтеза могут давать высокий энергетический выигрыш понятно не только из астрономических данных. Поэтому, когда образуется среднее или лёгкое ядро при слиянии более лёгких ядер, должна освобождаться энергия, поскольку в новом ядре нуклоны сильнее связаны, чем в исходных ядрах. Реакции ядерного синтеза В термоядерных реакторах используется энергия, выделяющаяся при слиянии легких атомных ядер Термоядерные топлива Реакции с участием протонов, играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Оказалось, что последнюю реакцию наиболее легко зажечь в земных условиях (требуется нагреть смесь дейтерия с тритием "всего" до 100 миллионов градусов)

Термоядерный синтез в земных условиях Термоядерный синтез в медленном реакторе Взрыв водородной бомбы (или другого типа термоядерного процесса) - неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей. Принцип действия термоядерного реактора Реакция слияния легких ядер, цель которой - получение полезной энергии, называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях.

Магнитное удержание плазмы Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Термоядерные реакции протекают при высоких температурах

В состоянии плазмы находится подавляющая часть вещества Вселенной - звёзды, звёздные атмосферы, туманности галактические и межзвёздная среда. В магнитном поле с индукцией В на частицы плазмы действует Лоренца сила; в результате этого заряженные частицы плазмы вращаются с циклотронными частотами по ларморовским спиралям (кружкам). При описании плазмы с помощью уравнений магнитной гидродинамики она рассматривается как сплошная среда, в которой могут протекать токи

Спектр излучения низкотемпературной (например, газоразрядной) плазмы состоит из отдельных спектральных линий Чтобы удержать плазму, например, при температуре 108 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме. Системы с замкнутой магнитной конфигурацией Пинч-эффект появляется в токовом канале, например в цилиндре, заполненном проводящей средой. Электрическое поле приложено к противоположным концам цилиндра и действует по его оси. В системах открытой конфигурации проблема удержания плазмы в продольном направлении решается путем создания магнитного поля, силовые линии которого вблизи торцов камеры имеют вид сужающегося пучка

Установки с магнитным удержанием Одной из первых и самых простых попыток реализовать идею магнитного удержания является Z-пинч - плазменный шнур между двумя электродами, ток в котором создает азимутальное магнитное поле, призванное сжимать и удерживать плазму. Для удержания плазмы при помощи тороидального магнитного поля необходимо создать условия, при которых плазма не смещалась бы к стенкам тора

Токамак В установках типа токамак плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. С этой целью в плазменном сгустке создают электрический ток, и при этом, как у всякого тока, у него появлялось собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками Основной нагрев идет за счет джоулева тепловыделения. Сильно нагреваются прежде всего электроны плазмы, менее - ионы. Передача энергии от электронов к ионам идет медленно (из-за малости потока энергии)

Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Создание термоядерного реактора натолкнулось на ряд технологических трудностей

Стелларатор Здесь, как и в ТОКАМАКе, плазма тоже подвешена в магнитном поле, но тока в ней нет. Греют плазму в основном мощным радиоизлучением, а держат ее только сложной формы магнитные поля, созданные внешними катушками. Открытая ловушка В установке типа открытой ловушки (пробкотрон) в цилиндрическую вакуумную камеру, запертую магнитными пробками, точно выбрав направление, впрыскивают атомы, которые тормозятся в водородном газе и превращают его в горячую плазму. Удерживают ее магнитные поля сложной конфигурации. Чтобы не доводить дело до взрыва, термоядерная реакция должна протекать в малых дозах - в разреженной и очень нагретой дейтерий-тритиевой плазме Начальный этап работ характеризовался обилием идей и типов ловушек (пинчи, удержание высокочастотными полями, плазменные ускорители, способы нагрева плазмы и т. д.) К 1968 г. при омическом нагреве плазмы на токамаке Т-ЗА температуры электронов и ионов достигли 20 млн. и 4 млн. градусов соответственно - результат, в несколько раз превосходивший мировой уровень. В 1997 г., после завершения технического проекта реактора ИТЭР с термоядерной мощностью 1.5 ГВт, стороны решили изменить проект, чтобы сократить его стоимость с 8 до 4 млрд. долл.

В физической базе ИТЭРа, основанной на опыте десятков токамаков ведущих лабораторий мира, собраны результаты по удержанию плазмы, переходу в режимы улучшенного удержания, поведению плазмы в поверхностном слое, увлечению тока, нагреву электронов и ионов и т.д. Современные открытые магнитные системы исследуются под руководством академика Э.П.Круглякова в Институте ядерной физики им. Г.И.Будкера СО РАН на установках многопробочной ГОЛ-З, газодинамической ГДЛ и амбиполярной АМБАЛ-М, наиболее простых в инженерном отношении для реакторов, но сложных в отношении удержания.

Сегодня лазер - неоспоримый лидер в работах по инерционному удержанию. В СССР исследования начались на многомодульной установке "Ангара-5-1", построенной в 1984 г. в филиале Института атомной энергии (теперь ТРИНИТИ) в Троицке

Термоядерный реактор - устройство для получения энергии за счет реакций синтеза легких атомных ядер, происходящих в плазме при очень высоких температурах (выше 108К). Основное требование, которому должен удовлетворять термоядерный реактор, заключается в том, чтобы энерговыделение в результате термоядерных реакций с избытком компенсировало затраты энергии от внешних источников на поддержание реакции. Термоядерный реактор характеризуется коэффициентом усиления мощности (добротностью) Q, равным отношению тепловой мощности реактора к мощности затрат на ее производство. Термоядерный реактор на DT-топливе в зависимости от материала бланкета может быть «чистым» или гибридным. Наиболее мощный современный ТОКАМАК JET (Joint European Torus - Объединенный Европейский Top), был создан в городе Абингдон недалеко от Оксфорда (Англия), в Научном Центре Кулхэм (Culham Science Centre). В конце 1999 г. в Англии начал работать Такамак MAST (Mega-Amp Spherical Tokamak - супермощный сферический токамак), разработанный в Научном Центре Кулхэм (Culham Science Centre). Этот реактор относится к новому типу термоядерных реакторов, так называемым низкоаспектным токамакам (аспект - отношение внешнего к внутреннему радиусов бублика).

Современные физические исследования позволяют глубже понять явления переносов и устойчивости, что постепенно учитывается в проекте. В вакуумной камере ИТЭРа сверхпроводящая магнитная система создает тороидальное магнитное поле напряженностью 5.3 Т и полоидальное поле, управляющее положением плазмы в камере Низкоаспектные (сферические) токамаки Казахстанский Токамак КТМ является экспериментальной термоядерной установкой для отработки задач материаловедения на предмет радиационной стойкости Дизайн магнитной конфигурации и методика работы обеспечат генерацию плазменный поток в диверторе 1-20 MW/m2. Во время замедления (в конструкционных материалах токамака, во вспомогательных системах, окружающих токамак, в бетоне стен и др.) энергия нейтронов уменьшается.

Импульсные системы Управляемый термоядерный синтез может быть достигнут не только на реакторах с магнитными ловушками, но и на установках инерционного удержания. Конкретный путь реализации лазерного термояда был указан Н.Г.Басовым и О.Н.Крохиным в 1964 - обжимать и нагревать D-T-мишени мощными лазерными пучками, самой природой предназначенными для быстрого ввода в малый объем огромной порции энергии. Это направление получило название лазерного термояда Пучковый термоядерный синтез Рентгеновский термоядерный синтез Один из вариантов пучкового термояда базируется на использовании пучка рентгеновского излучения. При сдавливании электрическим разрядом (Z-пинч) вольфрамовых проволок, окружающих дейтериевую мишень, проволоки испаряются, создавая мощный рентгеновский импульс, который сжимает и нагревает мишень. С середины 90-х гг. в Российском федеральном ядерном центре ВНИИТФ (г. Снежинск, ранее Челябинск-70) разрабатывается метод получения ТЯ-энергии путем взрывов атомных зарядов, инициирующих D-D-реакцию

Холодный термоядерный синтез Особняком стоит метод УТС, в котором не нужны горячая плазма, микро- и макровзрывы, вообще какой-либо разогрев. Это направление, получившее название холодного термояда, или, более правильно, мюонного катализа, было предложено А.Д.Сахаровым и Я.Б.Зельдовичем в 1957 г.

Включившиеся в исследования высококвалифицированные ученые из ведущих физических центров ряда стран мира пришли к однозначному выводу о беспочвенности надежд на возможность создания подобного источника энергии.

Безопасность установок УТС Достоверная оценка безопасности термоядерного реактора получена пока только в рамках проекта ИТЭР. В этом реакторе практически вся радиоактивность сосредоточена в твердых отходах (конструкционных материалах, бридере (бланкете) топлива и бериллии, если он есть в реакторе). Перспективы термоядерной энергетики

УТС достигнуть пока не удалось Приходится утешаться промежуточными результатами термоядерных исследований. Конечно, работы по термояду оказали положительное влияние на развитие науки и технологии. Физика горячей плазмы, построенная на основе электродинамики, астрофизики, газодинамики, физики твердого тела и газового разряда, обогатила эти научные дисциплины новыми разработками

Главными аргументами в пользу термоядерного синтеза как физической основы энергетики будущего в настоящее время являются следующие утверждения: Неограниченные запасы общедоступного топлива В термоядерном реакторе электрической мощностью 1000 Мвт (эл) (т. е. такой же, как у современных реакторов деления ВВЭР-1000 и РМБК-1000), где происходит около 1021 реакций синтеза в секунду, стационарно содержится до 1011 Кюри радиоактивности Другая серьёзная экологическая проблема связана с тритием. Использование в термоядерной энергетике какой-либо иной реакции, кроме синтеза дейтерия и трития, почти исключено. Между тем тритий - Р-активный радионуклид с периодом полураспада 12,4 года и высокой радиотоксичностью Отвлечемся на некоторое время от термояда. Известно, что как оружейный материал 239Pu гораздо более эффективен, нежели 235U.

Атомные реакторы на быстрых нейтронах в некоторых странах запрещают из-за накопления плутония, противопоставляя им термоядерные реакторы, как не производящие плутоний и в этом смысле не представляющие интерес для террористов.

Рассмотрим более подробно аварийные ситуации, которые могут возникнуть в процессе эксплуатации термоядерного реактора. Ядерные материалы и изделия Развитие ядерной индустрии невозможно без создания специальных материалов со специфическими (и уникальными!) свойствами. Ядерные материала можно разделить на два класса: функциональные и конструкционные. Сечение деления характеризует вероятность деления ядра нейтроном. От того, какая доля ядер не участвует в процессе деления, зависит выход энергии на один поглощенный нейтрон. Число нейтронов, испускаемых в одном акте деления, важно с точки зрения поддержания цепной реакции.

Керамическое топливо - ядерное топливо, состоящее из тугоплавких соединений, например, оксидов, карбидов, нитридов. Силумин - лёгкие литейные сплавы алюминия (основа) с кремнием (3 - 13%, иногда до 26%) и некоторыми другими элементами (Cu, Mn, Mg, Zn, Ti, Be).

Топливо для реакторов на тепловых нейтронах При правильном выборе замедлителя реактор на тепловых нейтронах может работать на любом топливе - от природного урана до обогащенного урана и плутония. Топливо для ВВЭР В топливных таблетках для реакторов ВВЭР-440 и ВВЭР-1000 в качестве выгорающего поглотителя используется гадолиний (содержание оксида гадолиния варьируется в интервале 3 - 8% масс). Существующая технология позволяет добиться гомогенного распределения гадолиния по топливной таблетке и образованием твердого раствора оксида гадолиния в оксиде урана. В топливных таблетках стремятся образовать однородную пористую структуру, избегая маленьких и больших пор, и добиться однородных размеров зерен. Топливо для реакторов на быстрых нейтронах В реакторах на быстрых нейтронах при подборе конструкционных и технологических материалов избегают применения веществ с низким массовым числом, которые могут замедлить нейтроны. Наилучшим замедлителем является водород, поскольку его масса почти равна массе нейтрона и, следовательно, нейтрон при соударении с водородом теряет наибольшее количество энергии. Поглотитель нейтронов - материал, с которым нейтроны интенсивно взаимодействуют посредством реакций, приводящих к исчезновению нейтронов как свободных частиц.

Теплоноситель - флюид (гелий, воздух, углекислый газ, вода, водяной пар, органическая жидкость, жидкий металл, расплав солей), циркулирующий через активную зону, чтобы вынести тепло, генерируемое в ней делением и радиоактивным распадом, к парогенераторам или теплообменникам, где это тепло передается теплоносителю второго контура. Под действием ионизирующего излучения происходит разложение воды (радиолиз) с участием следующих реакций Натрий является хорошим теплоносителем, но у него есть недостатки: в нем наводится радиоактивность, у него низкая теплоемкость, он химически активен и затвердевает при комнатной температуре

Тепловыделяющие элементы и топливные сборки Основной составной частью активной зоны ядерного энергетического реактора являются ТВЭЛы, собранные в тепловыделяющие сборки (ТВС) и содержащие определённое количество твёрдого ядерного топлива. По характеру топлива и оболочки различают: ТВЭЛы, в которых топливо и оболочка металлические, ТВЭЛы, состоящие из керамического топлива и металлической оболочки и полностью керамические ТВЭЛы, покрытые пленками из пироуглерода, включенные в графитовую матрицу.

ТВЭЛ и ТВС для ВВЭР В реакторе типа ВВЭР в качестве ядерного топлива используется спеченный диоксид урана с начальным обогащением ураном-235 в стационарном режиме в диапазоне от 2.4 до 4.4 % (масс). Полная загрузка реактора топливом - 75 тонн. ТВЭЛ для РБМК В качестве топлива в реакторах РБМК используется двуокись урана U. Для уменьшения размеров реактора содержание 235U в топливе предварительно повышается до 2,0 или 2,4 % на обогатительных комбинатах. Загрузка реактора ураном - 200 тонн. ТВС для реактора на быстрых нейтронах, БН600 - реактор на быстрых нейтронах с натриевым теплоносителем. Электрическая мощность 600 МВт. Проектная активная зона, состоявшая из тепловыделяющих сборок с обогащением по 235U 21% и 33%, эксплуатировалась с 1980 по 1986. Первые технологические схемы были основаны на методах порошковой металлургии. Отличительной особенностью этих методов получения микросферического керамического топлива является использование в качестве исходного материала порошка ядерного топлива, состав которого соответствует конечному продукту.

Конструкционные материалы Ядерными энергетическими называются установки, преобразующие ядерную энергию в работу с помощью рабочего тела - газа реального, например водяного пара, или псевдогаза - электронов твёрдого тела. Основным отличием ЯЭУ от обычных тепловых энергетических установок является наличие мощных радиационных полей, вызывающих структурные изменения в объёме материала и на поверхности и, как следствие этого, ухудшение свойств облучаемого материала. Рассмотрим условия работы ТВЭЛа - наиболее напряжённого узла реактора. Оболочка ТВЭЛаподвержена многообразному силовому воздействию, включающему вибрационные нагрузки, установочные усилия, внутреннее давление газообразных продуктов деления, радиальное давление топлива на оболочку, силу веса топливного сердечника, давление распухающего топлива, давление, вызванное распуханием оболочки, термические напряжения в оболочке, усилие от трения топлива в оболочке, внешнее давление теплоносителя

Корпус ядерного реактора В ядерных реакторах корпусного типа, работающих на водяных или газовых теплоносителях, корпус может быть или стальной, или комбинированный из стали и напряжённого бетона. Эксплуатационная стойкость конструкционного материала в условиях теплосмен, в магнитном и электрическом полях, в поле радиационного воздействия существенно зависит от сочетания физических свойств. Физико-химические свойства конструкционных материалов - это совокупность свойств, характеризующих степень химического взаимодействия материалов с окружающей технической средой ЯЭУ, т.е. с теплоносителями (водой, газами, жидкими металлами, солями металлов и др.), с контактирующими материалами (ядерным топливом и др.).

Материалы конструктивных элементов ЯЭУ Тепловыделяющие элементы. Конструкционные материалы ТВЭЛов реакторов на тепловых нейтронах должны обеспечить: минимальное искажение нейтронного поля; простоту конструкции и низкую стоимость оболочки; надёжную работу в течение всего периода расчётной компании; запланированное выгорание топлива без искажения размеров, формы и разрушения (разгерметизации оболочки); возможность переработки ядерного топлива. Материалы оболочки ТВЭЛов ядерных реакторов должны обладать термической и радиационной стабильностью, конструктивной прочностью и коррозионной стойкостью. Совершенствование конструкционных материалов ЯЭУ Конструкционные материалы современных ЯЭУ представляют собой сложные, многокомпонентные сплавы различных элементов. Эти сплавы содержат один или несколько элементов, определяющих основные свойства материала, составляющих его основу, и ряд лигирующих элементов, придающих основе недостающие эксплуатационные характеристики В основе формирования определённого структурно-фазового состояния материала лежит взаимодействие химических элементов (компонентов), составляющих данный материал, между собой.

Коррозионная стойкость материала Коррозией называют поверхностное разрушение металлов в результате воздействия окружающей среды, в основе которого лежат химические и физико-химические (электрохимические) процессы. Химическую и электрохимическую коррозию конструкционных материалов в зависимости от среды называют: газовой, в электролитах, в неэлектролитах, атмосферной, контактной и т. д. Коррозия в жидких средах Стабильность материала в условиях облучении Стадия накопления радиационных дефектов по мере увеличения флюенса представляется более управляемой, чем стадия их образования. Аннигиляция дефектов за счёт взаимной рекомбинации и ухода на стоки усиливается по мере увеличения температуры облучаемого материала С ростом энергии нейтрона эффект радиационного упрочнения увеличивается, а с увеличением температуры обучаемого материала выше 0,25Тпл снижается и при Т>0,6Тпл практически отсутствуют. Высокотемпературному радиационному охрупчиванию подвержены тугоплавкие металлы, коррозионно-стойкие стали и никелевые сплавы при температурах выше 0,45Тпл. Инкубационный уровень флюенса у чистых металлов (для Ni - это Ф=4*10) м меньше, чем у сплавов (для стали 1026 м-2); зависимость распухания от температуры имеет сложный характер с максимумом при (0,4 - 0,45)Тпл, причём распухание установлено в широком интервале температур от 0,25 до 0,55Тпл Примеси внедрения при оптимальной концентрации способствуют ускорению рекомбинации вакансий и примесных атомов, отравляют поры как стоки вакансий, дислокационные петли и дислокации, тормозя перемещение последних Под явлением радиационного роста понимается анизотропное изменение размеров кристаллов в условиях облучения без приложения внешней нагрузки.

Математика, физика, электротехника примеры решения задач Информатика