Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Электрические цепи с распределенными параметрами Линия с распределенными параметрами без потерь Нелинейные магнитные цепи постоянного потока Нелинейные цепи переменного тока. Переходные процессы в нелинейных цепях

Элетротехнические расчеты Курсовой по электротехнике

Переходные процессы в нелинейных цепях

1. Общая характеристика переходных процессов в нелинейных цепях

Переходные процессы в нелинейных цепях описываются системой нелинейных дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа. Расчет переходных процессов в нелинейных цепях сводится, таким образом, к решению системы нелинейных дифференциальных уравнений. Значительные трудности, возникающие при таких расчетах, обусловлены сложностью решения нелинейных дифференциальных уравнений.

Для расчета переходных процессов в нелинейных цепях нельзя указать общие методы, применимые для любого класса цепей. Выбор метода расчета всегда индивидуален и определяется конкретными условиями задачи: структурой схемы цепи, видом уравнения аппроксимации нелинейной характеристики, требованиями к форме искомой функции и др. Ниже перечислены наиболее важные методы, которые применяются для расчета переходных процессов в нелинейных цепях:

  1) метод интегрируемой аппроксимации характеристики нелинейного элемента;

  2) метод кусочно-линейной аппроксимации характеристики нелинейного элемента;

  3) метод условной линеаризации нелинейного дифференциального уравнения;

  4) метод численного интегрирования системы нелинейных дифференциальных уравнений.

Переходные процессы в нелинейных цепях могут существенно отличаться от переходных процессов в аналогичных по структуре линейных цепях. Нелинейность характеристики какого-либо элемента цепи может привести или только к чисто количественному изменению переходного процесса или к его качественным изменениям. В первом случае на некоторых отрезках времени скорость переходного процесса увеличивается, а на других отрезках времени  - замедляется. Во втором случае в цепи возникает качественно новые явления, принципиально невозможные в линейных цепях, например, незатухающие автоколебания с произвольной постоянной или плавающей частотой.

Расчет переходного процесса методом интегрируемой аппроксимации

Метод основан на аппроксимации характеристики нелинейного элемента такой функцией, которая позволяет проинтегрировать дифференциальное уравнение цепи стандартным методом.

Ценность метода заключается в том, что в результате интегрирования, решение для искомой функции получается в общем виде, что позволяет исследовать влияние на искомую функцию различных факторов. Метод применим главным образом к простым электрическим цепям, процессы в которых описываются дифференциальным уравнением 1-го порядка.

Рассмотрим применение данного метода к расчету переходного процесса при включении нелинейной катушки i(y) к источнику постоянной ЭДС E (рис. 245). Вебер-амперную характеристику нелинейной катушки аппроксимируемым уравнением  . Дифференциальное уравнение цепи составляется по 2-му закону Кирхгофа: , откуда следует:

,

где обозначены x=y, a=.

По таблице интегралов находим решение:

Настоящая задача имеет аналитическое решение при аппроксимации нелинейной характеристики некоторыми другими уравнениями, например i=ky3,  i=ky4.

Расчет переходного процесса методом кусочно-линейной аппроксимации Метод основан на аппроксимации характеристики нелинейного элемента отрезками прямой. При такой аппроксимации дифференциальные уравнения цепи на отдельных участках будут линейными и могут быть решены известными методами (классическим или операторным). При переходе от одного участка к другому в дифференциальных уравнениях будут скачком изменяться постоянные коэффициенты, что повлечет скачкообразное изменение коэффициентов в их решении. Решения для отдельных участков сопрягаются между собой на стыках участков  на основе законов коммутации.

Переходные процессы в ключах с ОЭ

Расчет переходного процесса методом линеаризации дифференциального уравнения Сущность данного метода заключается в том, что в нелинейном дифференциальном уравнении, описывающем переходной процесс, пренебрегают нелинейностью второстепенных членов этого уравнения, при этом функциональные коэффициенты в этих членах заменяются постоянными. После такой замены нелинейное дифференциальное уравнение превращается в линейное и решается известными методами (классическим или операторным).

Расчет переходного процесса методом численного интегрирования дифференциального уравнения Режим нелинейной цепи любой сложности может быть описан системой нелинейных дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа. Как известно из математики, система дифференциальных уравнений (как линейных так и нелинейных) может быть решена методом численного интегрирования (методы Эйлера, Рунге-Кутта). Таким образом, режим любой нелинейной цепи может быть рассчитан методом численного интегрирования дифференциальных уравнений.

Магнитные цепи переменного потока. Потери в сердечниках из ферромагнитного материала при периодическом перемагничивании. Магнитные цепи машин переменного тока, трансформаторов работают в режиме периодического перемагничивания, т.е. при переменном магнитном потоке ф(t). При периодическом перемагничивании ферромагнитных сердечников в них происходят потери энергии, которые выделяются в виде тепла. Эти потери условно можно разделить на два вида: а) потери на гистерезис рг и б) потери на вихревые токи рв. Потери на гистерезис обусловлены явлением гистерезиса

Расчет магнитной цепи переменного потока комплексным методом Машины переменного тока, трансформаторы, в которых ферромагнитные сердечники подвергаются периодическому перемагничиванию, работают в режиме вынужденного синусоидального напряжения на их обмотках. Рассмотрим работу магнитной цепи на примере сердечника трансформатора (рис. 252а). К обмотке трансформатора приложено синусоидальное напряжение , геометрические размеры магнитопровода и характеристики его материала заданы

8 Нелинейные цепи постоянного тока. Нелинейными электрическими цепями называют цепи, содержащие нелинейные элементы. Нелинейные элементы подразделяют на резистивные, индуктивные и емкостные. Обратим внимание на то, что с линейной частью любой сложной разветвленной цепи, содержащей нелинейные элементы, можно осуществить любые преобразования, применяемые для облегчения расчета сложных цепей постоянного тока.
Магнитное поле сложной системы проводов с током