Математика примеры решения задач Основы начертательной геометрии Физика курс лекций Примеры решения задач Электротехнические расчеты Maple Трехмерная графика
Теоремы и методы расчета сложных резистивных цепей Метод узловых потенциалов Векторные диаграммы переменных токов и напряжений Резонанс токов Топологические методы расчета электрических  цепей Расчет сложных трехфазных цепей

Элетротехнические расчеты Курсовой по электротехнике

Резонанс токов

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.

 

Комплексная входная проводимость схемы:

Условие резонанса токов:  или , откуда  - резонансная  (собственная) частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение:  = G, а ток источника также минимален и совпадает по фазе с напряжением источника (j = 0): I =UY = UG.

Токи в ветвях с реактивными элементами IL=U(-jBL), IC =U(jBC) равны по модулю, противоположны по фазе и компенсируют друг друга, а ток в резисторе G равен току источника (I=IG=UG). Равные по модулю токи в реактивных элементах IL = IC могут значительно превосходить ток источника I при условии, что BL=BC>>G .

Векторная диаграмма токов и напряжений показана на рис. 65.

Электрическая цепь с параллельным соединением элементов G, L и C в технике получила название параллельного колебательного контура. Свойства такой цепи как колебательного контура характеризуют следующие параметры:  - резонансная частота;  - волновая проводимость;  - добротность контура.

 

 

 

 

 

 

Резонансные характеристики параллельного контура представлены на рис. 66.

Рис. 66 
 

Резонанс токов находит широкое применение в области радиотехники и техники связи. В электроэнергетике компенсация реактивной мощности на промышленных предприятиях с помощью параллельного подключения конденсаторных батарей, по сути дела, представляет собой мероприятие, при котором также достигается резонанс токов.

 

Задача 3.3

В цепи U = 50 В, R = 25 Ом, L’ = 2 мГн, L = 0,4 мГн, С = 1 мкФ.

Определить: 1) резонансные частоты; 2) для каждой резонансной частоты токи в ветвях и токи в неразветвленной части цепи.

Для каждой резонансной частоты показать (в общем виде), что максимальные значения энергий магнитного и электрического полей равны между собой (рис. 3.3).

Рис. 3.3

Решение

1. Резонансная частота параллельного контура LC:

, .

Резонансная частота цепи как последовательного контура определится из уравнения:

ImZ(ω)=0,

.

Следовательно, , отсюда .

Таким образом,  1/с,

   1/с.

Компенсация реактивной мощности приемников энергии Активная мощность приемника P=UIcosj характеризует интенсивность потребления им энергии и зависит от режима его работы. Реактивная мощность приемника Q=UIsinj  характеризует интенсивность обмена энергией между электромагнитным полем приемника и остальной цепью. Эта мощность положительна при индуктивном характере приемника () и отрицательна при емкостном характере (). В промышленных условиях преобладающее большинство приемников имеют активно-индуктивный характер () и потребляют положительную реактивную мощность.

Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).

Резонанс в сложных схемах Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

Магнитносвязанные электрические цепи Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными)

Последовательное соединение магнитносвязанных катушек Пусть две магнитносвязанные катушки (R1, L1, R2, L2, M) соединены последовательно с источником ЭДС Е . При последовательном соединении положительное направление тока выбирается одновременно для обеих катушек, поэтому его направление относительно одноименных выводов зависит только от способа соединения катушек между собой: a) согласное (*) и б) встречное ( · ).

Переход от алгебраической формы к структурной схеме, и наоборот. Функционально полные системы логических элементов Для практической реализации Булевой функции надо от алгебраического способа ее представления перейти к структурной схеме.

Комплексный метод позволяет дифференциальные уравнения состояния электрических цепей с источниками гармонических ЭДС и токов свести к алгебраическим уравнениям с комплексными величинами Поскольку уравнения состояния в комплексной форме имеют такой же вид, как и для цепей постоянного тока, то программы для ЭВМ, используемые при расчете цепей синусоидального тока, принципиально не отличаются от программ, применяемых при расчете цепей постоянного тока.
Теория электромагнитного поля